
 1

Abstract—Artist-rendered animation data struggles to

establish believable character animations for immersive games

without programmatic techniques. This study uses raw

animation data and a series of blending techniques to explore the

animation quality possible for a bipedal character on uneven

terrain. An animation-blending tree organizes and optimizes

animation changes and inverse kinematics tweaks animations to

align properly with nearby geometry. Visual analysis in the test

environment demonstrates the strength of developed research

artifacts.

Index Terms—Character Animation, Animation Blending,

Inverse Kinematics

I. INTRODUCTION

IDEOGAMES often use cinematic gameplay to tell

stories and immerse the player in environments,

characters, and events. This illusion improves the success of

narrative games; animation and graphical glitches can break

immersion, removing the player from their experience and

reminding them that they are playing a videogame. Artist

animations achieve limited realism when the circumstance of

their use is unknown, and programmatic techniques can

produce results relevant to the current game state.

Technologies used in real time game animation include

skinned models that use bone weights, animation blending,

and inverse kinematics (IK) to make character actions look

natural for their current situation and environment. Smooth,

intelligent character animations can improve the immersion of

gameplay, facilitating dynamic traversal of environments.

Developing reusable assets, whether source code or art assets,

costs less than developing many similar assets. In addition,

reducing the number of artist-created assets reduces the

memory footprint of a videogame and frees up animators’ time

during development.

Manuscript received April 26, 2013.

Charles Colvin is with Cohort 17 at the Guildhall at Southern Methodist

University, Plano, TX 75024 USA (phone: 832-489-9460; e-mail:
ccolvin@smu.edu).

Jani Kajala, Advisor and Supervisor, is with Software Development at the

Guildhall at Southern Methodist University, Plano, TX 75024 USA (e-mail:
jkajala@smu.edu).

Squirrel Eiserloh, Reader, is with Software Development at the Guildhall

at Southern Methodist University, Plano, TX 75024 USA (e-mail:
beiserloh@smu.edu).

Jeff Wofford, Reader, is with Software Development at the Guildhall at

Southern Methodist University, Plano, TX 75024 USA (e-mail:
woffordj@smu.edu).

Setting up final character animations often involves trees of

nodes called animation trees, which modify the characters’

animated skeletons. In this study, raw biped animation data

developed for flat terrain environments pass through an

animation tree capable of intelligently improving the resulting

skeletal transformations by visiting its nodes. The raw

animations are a combination of artist work and motion

capture, but local environment geometry helps determine final

position and orientation of extremities. Inverse kinematics

calculations use animation data and terrain geometry to

modify foot position and leg orientation. Animation blending

uses smooth weight values to transition animations. This study

explores how well programmatic techniques can enhance

animations with limited animation data. The expected result is

that the character’s foot position and leg orientation appear

correct for the terrain geometry.

II. RESEARCH REVIEW

A. Animation Blending Trees

Animation blending trees organize character animations in a

logical way that facilitates blending. Reference [1] details

several important concepts involved in smoothly animating a

character model using blending trees. The game MechWarrior

uses an animation blending tree that sources 152 animations

per character to achieve their smooth results.

The procedure implemented in MechWarrior carries out the

following steps:

1) Build an animation tree based on the in-game states of the

character.

2) Advance necessary source animations to the next frame.

3) Determine the appropriate weights for each animation

throughout the tree.

4) Visit nodes in the animation tree that blend the skeletal

animation for rendering the frame.

Transitions from state to state use feather blending, a

technique where the previous animation phases out and the

new animation phases in over a short period. Axis blending is

a technique that blends movement forward, backward, and

strafing movements. Determining the direction and mapping

the orientation of movement to a two-dimensional grid of

animation sources is essential to the movement of characters.

Distances from each animation’s ideal point on the grid

determine blend weights for directional source animations.

Fig. 1 illustrates the feather blending and axis blending

techniques as shown in the MechWarrior article.

Improved Character Animation

Over Uneven Terrain

Charles E. Colvin, MIT Candidate, and Jani Kajala, Supervisor, The Guildhall at SMU

V

 2

Computation optimizations are available by culling regions

of the animation blending tree. Determining the necessary

nodes and animations before visiting the tree nodes reduces

CPU time spent on calculations and decreases the amount of

animation data for each frame. Similarly, optimizations in

animation data structures allow more animation assets to co-

exist in memory, reducing number of read cycles during

execution.

In a previous thesis work at the Guildhall [2], the theories

used in animation blending breaks down in some situations.

Michael Guerrero’s solution describes the use of artist poses

and animations, mapping those animations to gameplay states;

at runtime, his solution dynamically maps states to weight

values that determine how to blend artist animations. After he

implemented this solution, his tests revealed accuracy

problems that he addressed by developing additional

animation assets for the problematic regions of gameplay

states. The use of a similar technique for testing inadequate

limb orientations reveals where additional work or new artist

animation is necessary. When these new artist-made

animations map to an axis blending node, they correct

awkward positions in animation blends. As an alternative to

developing additional resources (as in Guerrero’s solution)

using an IK technique to modify the skeletal structure at

runtime could fix problems in animation blending without

additional artwork or memory.

B. Inverse Kinematics

Simon Yeung’s article [3] details relevant mathematics and

techniques for foot placement using inverse kinematics.

Yeung states that two pieces of data must be determined from

outside the inverse kinematic equations. The first is a point on

the ground for foot placement. The second is the leg

orientation in the artist-made animation. A general solution

attaches the foot to the ground, but there are infinite

orientations of the leg that will place the foot at the same

location. After placing the foot on the ground at an arbitrary

angle, an algorithm determines the final, most correct

orientation by minimizing the angle between the final

orientation and artist animation. Yeung’s simple two-joint IK

technique, based on animation and environment constraints,

makes up a significant part of the algorithm developed for the

research artifact.

C. Game Animation Technology Review

Game techniques for developing smooth, high-fidelity

animations go beyond animation blending trees and inverse

kinematics, using divergent designs specifically created and

optimized for their intended game experience. Animation

blending transitions, interpolations, and layering techniques

make up the backbone of animation blending systems, and

motion capture and variations of IK are common.

Battlefield 3 developer Mikael Hogstrom states that

temporal blend control and location alignment are important

methods for improving animation believability [4]. The speed

of transition between animations affects believability more

than the quality of motion during a blend. Interpolating

positions between gameplay and an in game cinematic creates

a seamless transition between the two, as do state transitions

when navigating an environment. Hogstrom calls this

technique aligning. Transitions from free movement states,

such as running, to animations that bind the character to an

element of the environment, such as grabbing a ledge, require

similar alignment techniques to smooth out the character

locomotion. Achieving smooth animation without aligning

between states would require highly accurate input from the

player. Requiring such precise movement from the player

increases his or her difficulty in traversing the environment

and negatively transforms the player’s experience. Tobias

Dahl states that they no longer employ traditional animators at

DICE, the studio that develops Battlefield 3; their animation

system has become a combination of animation blending, state

transitions, and motion capture data that calls upon traditional

animation skills only to fix up animations before use [4].

Uncharted 2 uses a state graph, where each state has its own

smaller animation blending tree [5]. Custom syntax defines

animation behavior, allowing animators and designers to

affect blend trees without direct programmer involvement.

Transitions between states require information about blend

time, curve type, and restrictions on transition timing during

animations. The custom syntax defines these variables and the

blend trees used by characters. A concrete data structure

exposes a limited set of variables describing the character’s

state and environment for animation blending. Having this

information clearly defined before the animation tree executes

its nodes simplifies the blend process and design of the

Uncharted 2 pipeline. Three tiers of animation specificity

shown in Fig. 2 allow the reuse of common structures. At the

top layer, all characters transition between shared AI and

Fig. 1. Diagrams from [1] illustrate feather blending and axis blending

techniques used in MechWarrior. Feather blending manages transitions

between animation states, while axis blending covers the range of character

movement with directional animations.

Fig. 2. From [5], this diagram shows the layers that allow reuse in
Uncharted 2. State graph anim-npc controls a variety of animation tree

classes, which each blend with different source animation sets.

 3

gameplay behavior states. In the middle tier, classes of

characters with similar behavior share animation blending

trees. Finally, individual characters replace animation nodes in

the blending tree with animations made specifically for their

character model. Optimizations and reuse in Uncharted 2

significantly improved the efficiency of memory use for

animation data, leaving room for more animated characters

and resulting in an overall richer cast. Additionally, the data-

driven animation language and standardized state data

structure allowed developers to prototype more quickly and

see the results of their work.

Crysis 2 utilizes a parametric blending scheme instead of

the standard transition, interpolation, and layering techniques

that the term animation blending usually represents [6]. The

system developed by Crytek uses a three-dimensional graph of

animations that functions like axis blending, but locomotive

data in the motion capture animations automatically generates

animation locations in the graph. Parameters of movement

speed, turning speed, and escalation act as coordinates for the

graph, used to determine animation sources and blend weights.

These parameters are each scalar values, together defining

Cartesian coordinates for the graph. Convex shapes, defined

by designers, fill spaces between animations and define which

animations apply to the Cartesian coordinates within. The

parametric Cartesian coordinates map to Barycentric

coordinates to interpolate weights for animations. Extrapolated

differences between animations allow for extreme situations

that would otherwise require additional motion capture data.

The system suffers from a conceptual design limitation, as

pushing toward a fourth parameter (movement direction)

resulted in a system that was difficult to debug and manage.

However, the interpolation and extrapolation devised by

Crytek requires only 34, leaving a small memory footprint and

requiring little animation development. A four-dimensional

system with three animations per axis, which would cover a

decent set of game motions, would require 216 animations.

These techniques optimize memory usage, allowing for

increased overall visual fidelity, especially for current-

generation consoles with limited available system memory.

Techniques for improving animations can drastically

improve the animation fidelity of games, but there are several

caveats that affect the design choices made by studios. In

general, the value of time invested in advanced techniques

depends entirely on the game design needs and technical

restrictions placed on development by the engine and

hardware. Consoles and lower-end machines possess limited

memory resources and benefit from optimized animation

systems that yield good results, such as the animation systems

in Crysis 2 and Uncharted 2 [5], [6]. Top-down and first-

person perspective views rely less on strong character

animation systems because character models occupy less

space on the screen. High-quality animation, high-polygon

models, and high-resolution textures are all most crucial in the

third-person perspective.

Games with simple environments and environmental

interactions also simplify the animation technology required to

make the character movements look clean and correct. Games

with only flat surfaces to stand on have much simpler

animation systems than those that allow players to climb over

every surface variant. As with many aspects of a game

experience, advancing quality beyond certain limits adversely

affects the rest of the game. Memory and available processing

power limit how much simulation and calculation can occur

during a single frame, but in the case of character locomotion

and animation, realism directly competes with smooth

controls. For example, realistic animation for a jumping

character would use a fixed trajectory. This control scheme

feels restrictive and hurts players’ experiences from a

gameplay standpoint. From Super Mario Bros. to the modern

Tomb Raider reboot, player input causes characters to move

unrealistically in the air, forcing animation alterations to

depict mid-air changes. Designers choose a balance between

technical realism and creating a fun control scheme, and

prioritization toward fun controls creates a better user

experience. Simplification of animation systems and

environment interaction reduces the negative effect of strong

controls on animations.

For the purposes of the research artifact, navigation occurs

on a simple environment with gently rolling hills. Expected

game animation technologies required to navigate the

environment smoothly include a single parameter axis blend

based on current speed and an inverse kinematics algorithm

for foot placement.

III. METHODOLOGY

A. Motion Capture Experimentation

Technology field review during early phases of artifact

development includes motion capture involving iPi Soft

software and two Microsoft Kinect devices. This solution costs

less than motion capture suits and captures usable motion

capture data; quality good enough for use in development of

Halo 4 cinematic movies [7]. To capture different

perspectives, the Kinect devices face the same area of the

room at a wide acute angle. Calibration of the two Kinect

devices is moving a flat surface, such as a piece of cardboard,

out in front of the devices. Then, before recording a motion,

the actor stands in the standard model T pose: a standard

standing pose for character models with arms outstretched.

After recording calibration and motions, the software

processes the recorded data into smooth animation frames that

animators apply to models and edit through common 3D

modeling and animation software. At game studios, animators

Fig. 3. From Crysis 2 [6], this visualization shows how move speed, turn
speed, and travel slope map to a three-dimensional axis. Using a single axis

blend to represent a parametric state allows a small number of animations to

represent a full range of locomotion.

 4

would review motion capture data before use, fixing occlusion

problems, glitches, and seams for looping animations. These

skills and experience were unavailable for this research

project. Despite being relatively inexpensive, the hardware

and software costs exceed the budget for the project. Due to

these barriers to using motion capture, purchased, pre-

processed models and animation data appear in the final

research artifact. However, experimentation reveals the iPi

Soft pipeline produces useful motion capture, confirming its

value for animators.

B. Asset Appropriation

Creating art assets for videogame projects requires skilled

labor beyond what is practical for conducting this research, yet

visual evaluation of the research artifact requires art assets

designed for use in videogames. A bipedal character model

and looping idle and walk animations are adequate assets to

show character movement for the research artifact. A character

model obtained online still requires skinning, a complicated

and time-consuming task for an artist [8]. An online script at

[9] uses guidelines provided by a user to assign skin weights

for a character mesh. With some minor editing, two purchased

animations become idle and walk loops in 3ds Max scenes for

the skinned character.

A test environment that proved easy to obtain and

implement is a grid of quads aligned at intervals of four, with

elevation manipulated by a noise formula in the up direction.

Aligned grid positions simplify queries for position. A

smooth, rolling terrain simplifies character movement by

limiting changes in elevation. Fig. 4 shows these assets

together without IK.

C. Blending Tree Development

A series of nodes reference animations and state data to

perform relevant skeletal adjustments and improve animation.

After completing an operation, a node passes the skeleton up

to influence other nodes in the blending tree. The core

research artifacts are the animation blending tree and the

operations performed on the character’s animation set. An axis

blending algorithm, inverse kinematics algorithm, player

input, raw animation data, and terrain geometry data make up

the animation nodes and their operations, as shown in the final

animation blending tree, Fig. 5.

This blending tree is a referenced member of the model

class. The walk and idle animation nodes, walk-idle blender

node, and IK fix-up node all inherit from a base node class.

The node’s work function modifies the bone structure based

on the node’s desired operation, and then returns the skeleton

to its parent node. Inheriting from a common base class allows

for interchangeable and extendable functionality.

Setting external data, such as control stick weight and a

reference to the terrain, allows the tree to perform its work

during a single function call. At a high level, the tree calls its

nodes in a child-first manner. In the research artifact,

animation nodes advance their animation frame, walk the

skeletal structure, and then return the results. The walk/idle

transition, a linear blend node, uses linear interpolation to

produce a combination of the two sourced animations by

blending relative transformations. Finally, the IK fix-up node,

a highly specialized node for placing feet of a biped character

on terrain, alters hip placement and the orientation of thigh

and calf bones.

D. Finite State Machine

The original design for proper foot placement utilizes a state

machine that requires access to the model and animations, and

expands the structure of temporary blending data.

Complicated environment navigation benefits from a finite

state machine, but simplifying and disconnecting the state

machine from raw animation data makes the implementation

cleaner and easier to maintain.

Fig. 5. Blend tree design for research artifact. Two animations seed a one-

dimensional axis blending node based on the character speed. Terrain queries

assist in establishing foot positions for the blended animation, which together
are manipulated to produce the final result.

Fig. 4. Original walk animation, adjusted vertically for height of terrain but
without any form of inverse kinematics. The right foot clips almost

completely into the terrain surface and the left foot is floating far above the

ground.

 5

In this initial design, four states exist to describe the foot as

flat, touching with the toe, touching with the heel, or lifted off

the ground. Between states that touch the ground, the

algorithm attempts to return the leg position smoothly to the

base animation. Data analysis for this method includes

analyzing the model to understand foot proportions and foot

state. By calculating several frames in the future, the algorithm

predicts when the base animation’s feet touched the ground. A

manually set integer constant determines the number of frames

to predict, and a threshold distance above the ground defines

when the foot touches the ground. When the foot touches the

ground within a number of frames, a bi-cubic spline

interpolates between the current position of the foot and the

final, terrain-aligned position.

Several flaws exist in this convoluted method. Some

animations do not need feet aligned with the ground, causing

the prepared calculations to break down for fuller ranges of

motion. Walking animation data requires additional time

during load and scales badly with increased number of

animations or number of animated characters. Predicting states

requires calculating several frames of motion ahead, an

expensive process to perform several times a second. Making

smooth transitions to the target foot position requires

additional tracking data, complicating the intermediate

structure.

Initially, requirements stated foot locations and orientations

must match the terrain underneath within a certain delta for a

chosen point on the geometry, and follow believably first-

order continuous movement, meaning both positions and

velocity flow smoothly. Continuity tests that analyze specific

position data for developed technologies could show such

first-order behavior, but these tests assume that first-order

continuity looks natural for human foot movement and the

planting of feet. Instead of simulating natural movement, the

alternate method for determining foot placement uses

movement already defined in the animation data. This simpler

process uses displacement of feet in the original animation,

and allows the natural movement of feet over a surface to

persist in an uneven environment.

IV. RESULTS

A. Blend Tree Implementation and Details

In their base class, blend tree nodes feature a working frame

used for developing intermediate results and a work function

that returns the intermediate results. The working frame is

composed of data structures that mimic the structure of the

model and animations, and animation tree nodes assume that

the bone structure of the model, animations, and working

frames are identical in shape and name throughout. A node of

the working frame contains pointers to child nodes, rotation,

scale, and translation parts, a string containing its name for

ease of reference, and a matrix for temporary calculations.

For the animation and linear blend nodes in the tree,

performing the work task involves relatively simple operations

that walk the bone structure in breadth-first fashion. Structural

data created dynamically during the node’s first use persists

until the end of execution to improve memory performance.

The most complicated operations occur in the inverse

kinematics node.

B. Inverse Kinematic Foot Placement

As previously stated, the initial solution involves detection

of current state per foot, predicting the future state, and

smoothly transitioning between target foot locations, followed

by a general inverse kinematics algorithm. Because this

method at some point requires using the animation to

determine displacement between the foot and the ground, a

simpler animation-based method removes the prediction and

spline method completely. The final solution uses the original

animation made for a flat environment to determine

displacements in the up direction relative to the rolling terrain,

ensuring that the movement remains believably human.

Adding the terrain elevation to the desired foot displacement

produces a reasonable target position.

With a problem involving only two limbs and so many

known variables, calculating the relationship between the

thigh and calf joints becomes a simple application of the law

of cosines. Fig. 6 shows the bones involved in the IK fix-up.

Knowing the lengths of the thigh, calf, and distance the leg

needs to extend to the ground creates a triangle with known

angles between the edges. The final solution IK fix-up

solution uses the simple method for determining foot positions

and triangle relationship for solving two joint IK chains.

An initial implementation fails to perform correctly in

several regards due to use of simple application of calculated

angles to canonical Euler angles. These initial calculations

move foot locations near their final desired locations, but are

visibly inadequate approximations. Symptoms include foot

sliding and animation popping during forward leg movements.

Because root node locations are determined by the terrain and

original model displacement, one or both feet would often end

up too short to reach the ground, and the impossible leg

Fig. 6. Joints involved in inverse kinematics equations. Joint transformations

in a character skeleton affect the starting points of the named body part.
Maintaining character proportions limits joint modifications to the rotational

part, as translation and scale stretch the character mesh.

 6

arrangements would produce bad transformations and

disappearing geometry.

After attempting a naïve solution, carefully adopting and

implementing an algorithm similar to that found in [3] yields

far smoother results. The following algorithm adjusts leg

orientations to uneven terrain in the research artifact:

1) Current horizontal axis-aligned locations of feet provide

the basis for querying the terrain for elevation. In the case

of the research artifact, the terrain is an axis-aligned grid

that allows for indexed queries in to an array of quads.

Barycentric coordinates calculated within the intended

quadrilateral provide weights for interpolating points from

the terrain mesh. Adding the height of the terrain to the

displacement of the foot in the animation data creates a

good target location for the foot.

2) If the full length of the leg (calf length + thigh length)

cannot reach the new target positions, the algorithm will

lower the character’s root node. As Fig. 7 demonstrates,

the resulting changes still look reasonable, but

environments with sharper changes in altitude would

cause abrupt changes in altitude using this method.

3) The law of cosines states a well-defined relationship

between the edge lengths and the vertex angles of a

triangle. Using this principle determines an angle for the

inside of the thigh and calf, and the calf joint rotation is

set using Euler angles. At this point, the leg from the

thigh bone to the foot bone can be thought of as a single

joint that will be rotated in to place from the hip. Fig. 8

shows the algorithm before rotating this single joint in to

place. When developing a rotation to align the foot to the

target foot location, if the starting and target vectors are

close to opposite, the dot product returns an arbitrary axis

and causes problems during the rest of the process.

Setting the initial thigh orientation to 90 degrees prevents

such an arbitrary rotation axis.

4) Vectors in Fig. 8 show current and desired orientations for

the full leg limb. Using cross product between the two

vectors determines the axis of rotation, and the geometric

application of the dot product determines the angle of

rotation for the thigh bone that places the foot in the

correct final position.

5) As seen in Fig. 9, the leg is oriented in a strange direction,

despite touching the ground correctly. One more rotation

is required along an axis from the thigh to the foot.

Solving the problem involves minimizing the difference

between the calculated leg orientation and animated leg

orientation. Rather than correcting with a vector travelling

down the thigh as presented in [3], a perpendicular

forward vector produces visibly correct results. The

formulas in the research artifact come directly from [3],

but reference [10] describes a general method in depth

that solves a general system of several constraints, and

may yield slightly better results by treating the orientation

as two or three canonical vectors. Applying this rotation

yields the final animation frame, as seen in Fig. 10.

The results reached are visibly successful for this

environment and set of animations. Quick leg movements

occur when the terrain descends drastically, suddenly

extending the leg toward the ground. Larger declines would

affect the root joint as well, but such an environment would

require additional animations and finite states with different

behavior.

Fig. 7. In this arrangement, the character’s back, or left, foot cannot reach
the desired foot position without displacing the hip downward. The axis

beneath the character is drawn in to the ground to indicate this change in the

root bone. At this height, the left leg can just barely reach the desired foot

position, causing the inverse kinematics to fully extend the leg.

Fig. 8. Law of cosines defines a relationship between limb lengths and the

angles between them. The algorithm sets the angle between the thigh and calf
early in the process. Setting an initial thigh angle of 90° results in a useful

axis of rotation, shown extruding toward the camera. The illustrated rotation

brings the foot bone in to position.

Fig. 9. Using formulas presented in [3], the final rotation uses the axis that
preserves the foot location to minimize the angle between initial artist or

motion capture data and the position calculated via inverse kinematics to

reach a desired foot location. Minimizing using a forward vector for the bone
rather than the vector aligning with the thigh produces consistently correct

results.

 7

V. CONCLUSION AND FUTURE WORK

 Through field review and development of the research

artifact, this study shows improvement of animation fidelity

through programmatic techniques; however, the needs and

variations of techniques used to improve animation systems

vary as widely as the game scenarios that need these

animation systems. Animation blending trees and inverse

kinematics, as explored by the research artifact, cover the

common elements of more complicated animation needs for

quality games and player immersion. These techniques – in

tandem with situation-specific character states – are core

techniques of programmatic enhancements for video game

animation.

 Complex environments and embedded data enable further

research for character animation. Vertical navigation such as

climbing, falling, and ledge grabbing would benefit from

alternate applications of inverse kinematics and parametric

blending. Environments with different kinds of terrain could

apply animation blending to transition between states. The

rolling hills environment used for research of animation

techniques does not extend or scale to such needs and a better

understanding of the geometry and methods for encoding

gameplay data would enable richer environment navigation.

VI. REFERENCES

[1] J. Edsall. (2003, July 4). Animation Blending: Achieving Inverse

Kinematics and More. Gamasutra [Online]. Available:
http://www.gamasutra.com/view/feature/131863/animation_blending_ac

hieving_.php

[2] M. Guerrero, “Pseudo Inverse Kinematics via Skeletal Animation
Blending,” M.I.T. thesis, Software Development, Guildhall at Southern

Methodist University, Plano, TX, Spring 2009.

[3] S. Yeung. (2012, January 20). Inverse Kinematics (two joints) for foot
placement. Gamasutra [Online]. Available:

http://www.gamasutra.com/view/news/129168/Inverse_Kinematics_two

_joints_for_foot_placement.php
[4] T. Dahl and M. Hogstrom. (2012). Animation methodology for

Battlefield 3. GDC Vault [Online]. Available:

http://www.gdcvault.com/play/1015831/Animation-methodology-for-
Battlefield

[5] J. Bellomy. (2011). Animating NPC's in UNCHARTED. GDC Vault

[Online]. Available: http://www.gdcvault.com/play/1014738/Animating-
NPC-s-in

[6] I. Herzeg. (2011). CRYSIS 2: Getting More Interactivity out of

Animation-Data. GDC Vault [Online]. Available:
http://www.gdcvault.com/play/1014527/CRYSIS-2-Getting-More-

Interactivity

[7] V. Gray-Clark, R. Ecke. (March 11, 2013). Game On For iPi Soft and
“Halo 4”. PRWeb [Online]. Available:

http://www.prweb.com/releases/2013/3/prweb10514154.htm

[8] TurboSquid [Online]. Available:
http://www.turbosquid.com/FullPreview/Index.cfm/ID/451709

[9] Mixamo Auto-Rigger. Mixamo [Online]. Available:

http://www.mixamo.com/c/auto-rigger
[10] L. Wang, C. Chen, “A Combined Optimization Method for Solving the

Inverse Kinematics Problem of Mechanical Manipulators,” IEEE Trans.

Robotics and Automation, vol. 7, no. 4, pp. 489-499, Aug. 1991.

Fig. 10. Final animation, with inverse kinematics placement of feet, looks

more realistic than the artist animation alone. Axes near the ankles show the

better positions used to place the feet, and vectors extending from the thigh
bone (visibly near the hip) show the initial and final positions for the leg, as

well as the axis of rotation between the two.

http://www.gamasutra.com/view/feature/131863/animation_blending_achieving_.php
http://www.gamasutra.com/view/feature/131863/animation_blending_achieving_.php
http://www.gamasutra.com/view/news/129168/Inverse_Kinematics_two_joints_for_foot_placement.php
http://www.gamasutra.com/view/news/129168/Inverse_Kinematics_two_joints_for_foot_placement.php
http://www.gdcvault.com/play/1015831/Animation-methodology-for-Battlefield
http://www.gdcvault.com/play/1015831/Animation-methodology-for-Battlefield
http://www.gdcvault.com/play/1014738/Animating-NPC-s-in
http://www.gdcvault.com/play/1014738/Animating-NPC-s-in
http://www.gdcvault.com/play/1014527/CRYSIS-2-Getting-More-Interactivity
http://www.gdcvault.com/play/1014527/CRYSIS-2-Getting-More-Interactivity
http://www.prweb.com/releases/2013/3/prweb10514154.htm
http://www.turbosquid.com/FullPreview/Index.cfm/ID/451709
http://www.mixamo.com/c/auto-rigger

