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Abstract—Artist-rendered animation data struggles to 

establish believable character animations for immersive games 

without programmatic techniques.  This study uses raw 

animation data and a series of blending techniques to explore the 

animation quality possible for a bipedal character on uneven 

terrain. An animation-blending tree organizes and optimizes 

animation changes and inverse kinematics tweaks animations to 

align properly with nearby geometry. Visual analysis in the test 

environment demonstrates the strength of developed research 

artifacts. 

 
Index Terms—Character Animation, Animation Blending, 

Inverse Kinematics 

 

I. INTRODUCTION 

IDEOGAMES often use cinematic gameplay to tell 

stories and immerse the player in environments, 

characters, and events. This illusion improves the success of 

narrative games; animation and graphical glitches can break 

immersion, removing the player from their experience and 

reminding them that they are playing a videogame. Artist 

animations achieve limited realism when the circumstance of 

their use is unknown, and programmatic techniques can 

produce results relevant to the current game state. 

Technologies used in real time game animation include 

skinned models that use bone weights, animation blending, 

and inverse kinematics (IK) to make character actions look 

natural for their current situation and environment. Smooth, 

intelligent character animations can improve the immersion of 

gameplay, facilitating dynamic traversal of environments. 

Developing reusable assets, whether source code or art assets, 

costs less than developing many similar assets. In addition, 

reducing the number of artist-created assets reduces the 

memory footprint of a videogame and frees up animators’ time 

during development.  
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Setting up final character animations often involves trees of 

nodes called animation trees, which modify the characters’ 

animated skeletons. In this study, raw biped animation data 

developed for flat terrain environments pass through an 

animation tree capable of intelligently improving the resulting 

skeletal transformations by visiting its nodes. The raw 

animations are a combination of artist work and motion 

capture, but local environment geometry helps determine final 

position and orientation of extremities. Inverse kinematics 

calculations use animation data and terrain geometry to 

modify foot position and leg orientation. Animation blending 

uses smooth weight values to transition animations. This study 

explores how well programmatic techniques can enhance 

animations with limited animation data. The expected result is 

that the character’s foot position and leg orientation appear 

correct for the terrain geometry. 

 

II. RESEARCH REVIEW 

A. Animation Blending Trees 

Animation blending trees organize character animations in a 

logical way that facilitates blending. Reference [1] details 

several important concepts involved in smoothly animating a 

character model using blending trees. The game MechWarrior 

uses an animation blending tree that sources 152 animations 

per character to achieve their smooth results.   

The procedure implemented in MechWarrior carries out the 

following steps: 

1) Build an animation tree based on the in-game states of the 

character. 

2) Advance necessary source animations to the next frame. 

3) Determine the appropriate weights for each animation 

throughout the tree. 

4) Visit nodes in the animation tree that blend the skeletal 

animation for rendering the frame.  

Transitions from state to state use feather blending, a 

technique where the previous animation phases out and the 

new animation phases in over a short period. Axis blending is 

a technique that blends movement forward, backward, and 

strafing movements. Determining the direction and mapping 

the orientation of movement to a two-dimensional grid of 

animation sources is essential to the movement of characters. 

Distances from each animation’s ideal point on the grid 

determine blend weights for directional source animations. 

Fig. 1 illustrates the feather blending and axis blending 

techniques as shown in the MechWarrior article. 
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Computation optimizations are available by culling regions 

of the animation blending tree. Determining the necessary 

nodes and animations before visiting the tree nodes reduces 

CPU time spent on calculations and decreases the amount of 

animation data for each frame. Similarly, optimizations in 

animation data structures allow more animation assets to co-

exist in memory, reducing number of read cycles during 

execution.  

In a previous thesis work at the Guildhall [2], the theories 

used in animation blending breaks down in some situations. 

Michael Guerrero’s solution describes the use of artist poses 

and animations, mapping those animations to gameplay states; 

at runtime, his solution dynamically maps states to weight 

values that determine how to blend artist animations.  After he 

implemented this solution, his tests revealed accuracy 

problems that he addressed by developing additional 

animation assets for the problematic regions of gameplay 

states. The use of a similar technique for testing inadequate 

limb orientations reveals where additional work or new artist 

animation is necessary.  When these new artist-made 

animations map to an axis blending node, they correct 

awkward positions in animation blends. As an alternative to 

developing additional resources (as in Guerrero’s solution) 

using an IK technique to modify the skeletal structure at 

runtime could fix problems in animation blending without 

additional artwork or memory. 

 

B. Inverse Kinematics 

Simon Yeung’s article [3] details relevant mathematics and 

techniques for foot placement using inverse kinematics. 

Yeung states that two pieces of data must be determined from 

outside the inverse kinematic equations. The first is a point on 

the ground for foot placement. The second is the leg 

orientation in the artist-made animation. A general solution 

attaches the foot to the ground, but there are infinite 

orientations of the leg that will place the foot at the same 

location. After placing the foot on the ground at an arbitrary 

angle, an algorithm determines the final, most correct 

orientation by minimizing the angle between the final 

orientation and artist animation. Yeung’s simple two-joint IK 

technique, based on animation and environment constraints, 

makes up a significant part of the algorithm developed for the 

research artifact. 

 

C. Game Animation Technology Review 

Game techniques for developing smooth, high-fidelity 

animations go beyond animation blending trees and inverse 

kinematics, using divergent designs specifically created and 

optimized for their intended game experience. Animation 

blending transitions, interpolations, and layering techniques 

make up the backbone of animation blending systems, and 

motion capture and variations of IK are common. 

Battlefield 3 developer Mikael Hogstrom states that 

temporal blend control and location alignment are important 

methods for improving animation believability [4]. The speed 

of transition between animations affects believability more 

than the quality of motion during a blend. Interpolating 

positions between gameplay and an in game cinematic creates 

a seamless transition between the two, as do state transitions 

when navigating an environment. Hogstrom calls this 

technique aligning. Transitions from free movement states, 

such as running, to animations that bind the character to an 

element of the environment, such as grabbing a ledge, require 

similar alignment techniques to smooth out the character 

locomotion. Achieving smooth animation without aligning 

between states would require highly accurate input from the 

player. Requiring such precise movement from the player 

increases his or her difficulty in traversing the environment 

and negatively transforms the player’s experience. Tobias 

Dahl states that they no longer employ traditional animators at 

DICE, the studio that develops Battlefield 3; their animation 

system has become a combination of animation blending, state 

transitions, and motion capture data that calls upon traditional 

animation skills only to fix up animations before use [4]. 

Uncharted 2 uses a state graph, where each state has its own 

smaller animation blending tree [5]. Custom syntax defines 

animation behavior, allowing animators and designers to 

affect blend trees without direct programmer involvement. 

Transitions between states require information about blend 

time, curve type, and restrictions on transition timing during 

animations. The custom syntax defines these variables and the 

blend trees used by characters. A concrete data structure 

exposes a limited set of variables describing the character’s 

state and environment for animation blending. Having this 

information clearly defined before the animation tree executes 

its nodes simplifies the blend process and design of the 

Uncharted 2 pipeline. Three tiers of animation specificity 

shown in Fig. 2 allow the reuse of common structures. At the 

top layer, all characters transition between shared AI and 

 
 
Fig. 1.  Diagrams from [1] illustrate feather blending and axis blending 

techniques used in MechWarrior. Feather blending manages transitions 

between animation states, while axis blending covers the range of character 

movement with directional animations.  

 
 

Fig. 2.  From [5], this diagram shows the layers that allow reuse in 
Uncharted 2. State graph anim-npc controls a variety of animation tree 

classes, which each blend with different source animation sets. 
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gameplay behavior states. In the middle tier, classes of 

characters with similar behavior share animation blending 

trees. Finally, individual characters replace animation nodes in 

the blending tree with animations made specifically for their 

character model. Optimizations and reuse in Uncharted 2 

significantly improved the efficiency of memory use for 

animation data, leaving room for more animated characters 

and resulting in an overall richer cast. Additionally, the data-

driven animation language and standardized state data 

structure allowed developers to prototype more quickly and 

see the results of their work. 

Crysis 2 utilizes a parametric blending scheme instead of 

the standard transition, interpolation, and layering techniques 

that the term animation blending usually represents [6]. The 

system developed by Crytek uses a three-dimensional graph of 

animations that functions like axis blending, but locomotive 

data in the motion capture animations automatically generates 

animation locations in the graph. Parameters of movement 

speed, turning speed, and escalation act as coordinates for the 

graph, used to determine animation sources and blend weights. 

These parameters are each scalar values, together defining 

Cartesian coordinates for the graph. Convex shapes, defined 

by designers, fill spaces between animations and define which 

animations apply to the Cartesian coordinates within. The 

parametric Cartesian coordinates map to Barycentric 

coordinates to interpolate weights for animations. Extrapolated 

differences between animations allow for extreme situations 

that would otherwise require additional motion capture data. 

The system suffers from a conceptual design limitation, as 

pushing toward a fourth parameter (movement direction) 

resulted in a system that was difficult to debug and manage. 

However, the interpolation and extrapolation devised by 

Crytek requires only 34, leaving a small memory footprint and 

requiring little animation development. A four-dimensional 

system with three animations per axis, which would cover a 

decent set of game motions, would require 216 animations. 

These techniques optimize memory usage, allowing for 

increased overall visual fidelity, especially for current-

generation consoles with limited available system memory. 

Techniques for improving animations can drastically 

improve the animation fidelity of games, but there are several 

caveats that affect the design choices made by studios. In 

general, the value of time invested in advanced techniques 

depends entirely on the game design needs and technical 

restrictions placed on development by the engine and 

hardware. Consoles and lower-end machines possess limited 

memory resources and benefit from optimized animation 

systems that yield good results, such as the animation systems 

in Crysis 2 and Uncharted 2 [5], [6].  Top-down and first-

person perspective views rely less on strong character 

animation systems because character models occupy less 

space on the screen. High-quality animation, high-polygon 

models, and high-resolution textures are all most crucial in the 

third-person perspective. 

Games with simple environments and environmental 

interactions also simplify the animation technology required to 

make the character movements look clean and correct. Games 

with only flat surfaces to stand on have much simpler 

animation systems than those that allow players to climb over 

every surface variant. As with many aspects of a game 

experience, advancing quality beyond certain limits adversely 

affects the rest of the game. Memory and available processing 

power limit how much simulation and calculation can occur 

during a single frame, but in the case of character locomotion 

and animation, realism directly competes with smooth 

controls. For example, realistic animation for a jumping 

character would use a fixed trajectory. This control scheme 

feels restrictive and hurts players’ experiences from a 

gameplay standpoint.  From Super Mario Bros. to the modern 

Tomb Raider reboot, player input causes characters to move 

unrealistically in the air, forcing animation alterations to 

depict mid-air changes. Designers choose a balance between 

technical realism and creating a fun control scheme, and 

prioritization toward fun controls creates a better user 

experience. Simplification of animation systems and 

environment interaction reduces the negative effect of strong 

controls on animations.  

For the purposes of the research artifact, navigation occurs 

on a simple environment with gently rolling hills. Expected 

game animation technologies required to navigate the 

environment smoothly include a single parameter axis blend 

based on current speed and an inverse kinematics algorithm 

for foot placement. 

 

III. METHODOLOGY 

A. Motion Capture Experimentation 

Technology field review during early phases of artifact 

development includes motion capture involving iPi Soft 

software and two Microsoft Kinect devices. This solution costs 

less than motion capture suits and captures usable motion 

capture data; quality good enough for use in development of 

Halo 4 cinematic movies [7]. To capture different 

perspectives, the Kinect devices face the same area of the 

room at a wide acute angle. Calibration of the two Kinect 

devices is moving a flat surface, such as a piece of cardboard, 

out in front of the devices. Then, before recording a motion, 

the actor stands in the standard model T pose: a standard 

standing pose for character models with arms outstretched. 

After recording calibration and motions, the software 

processes the recorded data into smooth animation frames that 

animators apply to models and edit through common 3D 

modeling and animation software. At game studios, animators 

 
 

Fig. 3.  From Crysis 2 [6], this visualization shows how move speed, turn 
speed, and travel slope map to a three-dimensional axis. Using a single axis 

blend to represent a parametric state allows a small number of animations to 

represent a full range of locomotion. 
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would review motion capture data before use, fixing occlusion 

problems, glitches, and seams for looping animations. These 

skills and experience were unavailable for this research 

project. Despite being relatively inexpensive, the hardware 

and software costs exceed the budget for the project. Due to 

these barriers to using motion capture, purchased, pre-

processed models and animation data appear in the final 

research artifact. However, experimentation reveals the iPi 

Soft pipeline produces useful motion capture, confirming its 

value for animators. 

 

B. Asset Appropriation 

Creating art assets for videogame projects requires skilled 

labor beyond what is practical for conducting this research, yet 

visual evaluation of the research artifact requires art assets 

designed for use in videogames. A bipedal character model 

and looping idle and walk animations are adequate assets to 

show character movement for the research artifact. A character 

model obtained online still requires skinning, a complicated 

and time-consuming task for an artist [8]. An online script at 

[9] uses guidelines provided by a user to assign skin weights 

for a character mesh. With some minor editing, two purchased 

animations become idle and walk loops in 3ds Max scenes for 

the skinned character. 

A test environment that proved easy to obtain and 

implement is a grid of quads aligned at intervals of four, with 

elevation manipulated by a noise formula in the up direction. 

Aligned grid positions simplify queries for position. A 

smooth, rolling terrain simplifies character movement by 

limiting changes in elevation. Fig. 4 shows these assets 

together without IK. 

C. Blending Tree Development 

A series of nodes reference animations and state data to 

perform relevant skeletal adjustments and improve animation. 

After completing an operation, a node passes the skeleton up 

to influence other nodes in the blending tree. The core 

research artifacts are the animation blending tree and the 

operations performed on the character’s animation set. An axis 

blending algorithm, inverse kinematics algorithm, player 

input, raw animation data, and terrain geometry data make up 

the animation nodes and their operations, as shown in the final 

animation blending tree, Fig. 5.  

This blending tree is a referenced member of the model 

class. The walk and idle animation nodes, walk-idle blender 

node, and IK fix-up node all inherit from a base node class. 

The node’s work function modifies the bone structure based 

on the node’s desired operation, and then returns the skeleton 

to its parent node. Inheriting from a common base class allows 

for interchangeable and extendable functionality. 

Setting external data, such as control stick weight and a 

reference to the terrain, allows the tree to perform its work 

during a single function call. At a high level, the tree calls its 

nodes in a child-first manner. In the research artifact, 

animation nodes advance their animation frame, walk the 

skeletal structure, and then return the results. The walk/idle 

transition, a linear blend node, uses linear interpolation to 

produce a combination of the two sourced animations by 

blending relative transformations. Finally, the IK fix-up node, 

a highly specialized node for placing feet of a biped character 

on terrain, alters hip placement and the orientation of thigh 

and calf bones. 

 

D. Finite State Machine 

The original design for proper foot placement utilizes a state 

machine that requires access to the model and animations, and 

expands the structure of temporary blending data. 

Complicated environment navigation benefits from a finite 

state machine, but simplifying and disconnecting the state 

machine from raw animation data makes the implementation 

cleaner and easier to maintain.  

 
 
Fig. 5.  Blend tree design for research artifact. Two animations seed a one-

dimensional axis blending node based on the character speed. Terrain queries 

assist in establishing foot positions for the blended animation, which together 
are manipulated to produce the final result. 

  

 
 

Fig. 4. Original walk animation, adjusted vertically for height of terrain but 
without any form of inverse kinematics. The right foot clips almost 

completely into the terrain surface and the left foot is floating far above the 

ground. 
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In this initial design, four states exist to describe the foot as 

flat, touching with the toe, touching with the heel, or lifted off 

the ground. Between states that touch the ground, the 

algorithm attempts to return the leg position smoothly to the 

base animation. Data analysis for this method includes 

analyzing the model to understand foot proportions and foot 

state. By calculating several frames in the future, the algorithm 

predicts when the base animation’s feet touched the ground. A 

manually set integer constant determines the number of frames 

to predict, and a threshold distance above the ground defines 

when the foot touches the ground. When the foot touches the 

ground within a number of frames, a bi-cubic spline 

interpolates between the current position of the foot and the 

final, terrain-aligned position. 

Several flaws exist in this convoluted method. Some 

animations do not need feet aligned with the ground, causing 

the prepared calculations to break down for fuller ranges of 

motion. Walking animation data requires additional time 

during load and scales badly with increased number of 

animations or number of animated characters. Predicting states 

requires calculating several frames of motion ahead, an 

expensive process to perform several times a second. Making 

smooth transitions to the target foot position requires 

additional tracking data, complicating the intermediate 

structure.  

Initially, requirements stated foot locations and orientations 

must match the terrain underneath within a certain delta for a 

chosen point on the geometry, and follow believably first-

order continuous movement, meaning both positions and 

velocity flow smoothly. Continuity tests that analyze specific 

position data for developed technologies could show such 

first-order behavior, but these tests assume that first-order 

continuity looks natural for human foot movement and the 

planting of feet. Instead of simulating natural movement, the 

alternate method for determining foot placement uses 

movement already defined in the animation data. This simpler 

process uses displacement of feet in the original animation, 

and allows the natural movement of feet over a surface to 

persist in an uneven environment.  

 

IV. RESULTS 

A. Blend Tree Implementation and Details 

In their base class, blend tree nodes feature a working frame 

used for developing intermediate results and a work function 

that returns the intermediate results. The working frame is 

composed of data structures that mimic the structure of the 

model and animations, and animation tree nodes assume that 

the bone structure of the model, animations, and working 

frames are identical in shape and name throughout. A node of 

the working frame contains pointers to child nodes, rotation, 

scale, and translation parts, a string containing its name for 

ease of reference, and a matrix for temporary calculations. 

For the animation and linear blend nodes in the tree, 

performing the work task involves relatively simple operations 

that walk the bone structure in breadth-first fashion. Structural 

data created dynamically during the node’s first use persists 

until the end of execution to improve memory performance. 

The most complicated operations occur in the inverse 

kinematics node.  

B. Inverse Kinematic Foot Placement 

As previously stated, the initial solution involves detection 

of current state per foot, predicting the future state, and 

smoothly transitioning between target foot locations, followed 

by a general inverse kinematics algorithm. Because this 

method at some point requires using the animation to 

determine displacement between the foot and the ground, a 

simpler animation-based method removes the prediction and 

spline method completely. The final solution uses the original 

animation made for a flat environment to determine 

displacements in the up direction relative to the rolling terrain, 

ensuring that the movement remains believably human. 

Adding the terrain elevation to the desired foot displacement 

produces a reasonable target position. 

With a problem involving only two limbs and so many 

known variables, calculating the relationship between the 

thigh and calf joints becomes a simple application of the law 

of cosines. Fig. 6 shows the bones involved in the IK fix-up. 

Knowing the lengths of the thigh, calf, and distance the leg 

needs to extend to the ground creates a triangle with known 

angles between the edges. The final solution IK fix-up 

solution uses the simple method for determining foot positions 

and triangle relationship for solving two joint IK chains. 

An initial implementation fails to perform correctly in 

several regards due to use of simple application of calculated 

angles to canonical Euler angles. These initial calculations 

move foot locations near their final desired locations, but are 

visibly inadequate approximations. Symptoms include foot 

sliding and animation popping during forward leg movements. 

Because root node locations are determined by the terrain and 

original model displacement, one or both feet would often end 

up too short to reach the ground, and the impossible leg 

 
 

Fig. 6. Joints involved in inverse kinematics equations. Joint transformations 

in a character skeleton affect the starting points of the named body part. 
Maintaining character proportions limits joint modifications to the rotational 

part, as translation and scale stretch the character mesh. 
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arrangements would produce bad transformations and 

disappearing geometry. 

After attempting a naïve solution, carefully adopting and 

implementing an algorithm similar to that found in [3] yields 

far smoother results. The following algorithm adjusts leg 

orientations to uneven terrain in the research artifact:  

1) Current horizontal axis-aligned locations of feet provide 

the basis for querying the terrain for elevation. In the case 

of the research artifact, the terrain is an axis-aligned grid 

that allows for indexed queries in to an array of quads. 

Barycentric coordinates calculated within the intended 

quadrilateral provide weights for interpolating points from 

the terrain mesh. Adding the height of the terrain to the 

displacement of the foot in the animation data creates a 

good target location for the foot. 

2) If the full length of the leg (calf length + thigh length) 

cannot reach the new target positions, the algorithm will 

lower the character’s root node. As Fig. 7 demonstrates, 

the resulting changes still look reasonable, but 

environments with sharper changes in altitude would 

cause abrupt changes in altitude using this method. 

3) The law of cosines states a well-defined relationship 

between the edge lengths and the vertex angles of a 

triangle. Using this principle determines an angle for the 

inside of the thigh and calf, and the calf joint rotation is 

set using Euler angles. At this point, the leg from the 

thigh bone to the foot bone can be thought of as a single 

joint that will be rotated in to place from the hip. Fig. 8 

shows the algorithm before rotating this single joint in to 

place. When developing a rotation to align the foot to the 

target foot location, if the starting and target vectors are 

close to opposite, the dot product returns an arbitrary axis 

and causes problems during the rest of the process. 

Setting the initial thigh orientation to 90 degrees prevents 

such an arbitrary rotation axis. 

4) Vectors in Fig. 8 show current and desired orientations for 

the full leg limb. Using cross product between the two 

vectors determines the axis of rotation, and the geometric 

application of the dot product determines the angle of 

rotation for the thigh bone that places the foot in the 

correct final position. 

5) As seen in Fig. 9, the leg is oriented in a strange direction, 

despite touching the ground correctly. One more rotation 

is required along an axis from the thigh to the foot. 

Solving the problem involves minimizing the difference 

between the calculated leg orientation and animated leg 

orientation. Rather than correcting with a vector travelling 

down the thigh as presented in [3], a perpendicular 

forward vector produces visibly correct results. The 

formulas in the research artifact come directly from [3], 

but reference [10] describes a general method in depth 

that solves a general system of several constraints, and 

may yield slightly better results by treating the orientation 

as two or three canonical vectors. Applying this rotation 

yields the final animation frame, as seen in Fig. 10. 

The results reached are visibly successful for this 

environment and set of animations. Quick leg movements 

occur when the terrain descends drastically, suddenly 

extending the leg toward the ground. Larger declines would 

affect the root joint as well, but such an environment would 

require additional animations and finite states with different 

behavior. 

 

 
 

Fig. 7.  In this arrangement, the character’s back, or left, foot cannot reach 
the desired foot position without displacing the hip downward. The axis 

beneath the character is drawn in to the ground to indicate this change in the 

root bone. At this height, the left leg can just barely reach the desired foot 

position, causing the inverse kinematics to fully extend the leg.  

 
 

Fig. 8. Law of cosines defines a relationship between limb lengths and the 

angles between them. The algorithm sets the angle between the thigh and calf 
early in the process. Setting an initial thigh angle of 90° results in a useful 

axis of rotation, shown extruding toward the camera. The illustrated rotation 

brings the foot bone in to position. 

 
 

Fig. 9. Using formulas presented in [3], the final rotation uses the axis that 
preserves the foot location to minimize the angle between initial artist or 

motion capture data and the position calculated via inverse kinematics to 

reach a desired foot location. Minimizing using a forward vector for the bone 
rather than the vector aligning with the thigh produces consistently correct 

results. 
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V. CONCLUSION AND FUTURE WORK 

 

 Through field review and development of the research 

artifact, this study shows improvement of animation fidelity 

through programmatic techniques; however, the needs and 

variations of techniques used to improve animation systems 

vary as widely as the game scenarios that need these 

animation systems. Animation blending trees and inverse 

kinematics, as explored by the research artifact, cover the 

common elements of more complicated animation needs for 

quality games and player immersion. These techniques – in 

tandem with situation-specific character states – are core 

techniques of programmatic enhancements for video game 

animation. 

 Complex environments and embedded data enable further 

research for character animation. Vertical navigation such as 

climbing, falling, and ledge grabbing would benefit from 

alternate applications of inverse kinematics and parametric 

blending. Environments with different kinds of terrain could 

apply animation blending to transition between states. The 

rolling hills environment used for research of animation 

techniques does not extend or scale to such needs and a better 

understanding of the geometry and methods for encoding 

gameplay data would enable richer environment navigation. 
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